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Abstract

Experimental scientists face an increasingly diffi-
cult challenge: while technological advances al-
low for the collection of larger and higher quality
datasets, computational methods to better under-
stand and make new discoveries in the data lag
behind. Existing explainable Al and interpretabil-
ity methods for machine learning focus on better
understanding model decisions, rather than under-
standing the data itself. In this work, we tackle a
specific task that can aid experimental scientists in
the era of big data: given a large dataset of anno-
tated samples divided into different classes, how
can we best teach human researchers what is the
difference between the classes? To accomplish
this, we develop a new framework combining ma-
chine teaching and generative models that gener-
ates a small set of synthetic teaching examples
for each class. This set will aim to contain all the
information necessary to distinguish between the
classes. To validate our framework, we perform a
human study in which human subjects learn how
to classify various datasets using a small teaching
set generated by our framework as well as several
subset selection algorithms. We show that while
generated samples succeed in teaching humans
better than chance, subset selection methods (such
as k-centers or forgettable events) succeed better
in this task, suggesting that real samples might
be better suited than realistic generative samples.
We suggest several ideas for improving human
teaching using machine learning.

1. Introduction

Scientific research often necessitates the ability to analyze
labeled data and identify the differences that exist in it.
However, this task is often challenging due to the high
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dimensional nature of the data and the large number of
examples. For example, consider cell microscopy images
from sick and healthy individuals where each class is known
to be sampled from a separate population, but where the
exact nature of the differences between the healthy and
sick cells is unknown. Encouragingly, machine learning
(ML) classifiers often succeed in separating these samples
into their respective groups, indicating that even though
scientists have not yet found the distinction between them,
there exists a set of features that separates the classes.

This motivates the possibility of developing a teaching setup
where machine learning methods can find and highlight fea-
tures that will teach humans to better separate the groups.
Our teaching setup consists of showing human participants
a small compressed dataset that contains the necessary in-
formation to learn the classification problem. Using a com-
bination of machine teaching and generative models, we
optimize a synthetic realistic teaching set that succeeds in
teaching various human-proxy student models how to clas-
sify different datasets better than subset-selection methods.

We further compare the performance of real human partici-
pants who were trained on these realistic synthetic teaching
sets to humans who were trained on real subset selection
sets. We focus on biological datasets, where the problem of
making sense of data which is simultaneously annotated and
unexplained is prevalent. Our preliminary results suggest
that generated realistic images are better than real images in
the task of teaching ML models how to classify, but that sub-
set selection methods (such as k-centers (Sener & Savarese,
2017) or forgettable events (Toneva et al., 2018)) might be
just as good, or better, than generated realistic images in
teaching humans how to classify.

Our main contributions are:

* We suggest a method for generating a realistic synthetic
teaching set that is able to teach both ML classifiers
and human learners.

* We perform an empirical comparison between different
teaching sets, both synthetic and real, and study how
well they teach human participants.
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2. Related work

Our work is related to and is informed by several fields.
Subset selection deals with finding a subset of samples D C
D s.t. a student learning from Dy will perform as well as
a student learning from D. While most works deal with
specific student models (Singla et al., 2014; Chen et al.,
2018; Aodha et al., 2018; Pinsler et al., 2020), recent ones
attempt to teach deep learning models (Fan et al., 2018;
Sener & Savarese, 2018; Nguyen et al., 2020; Coleman
et al., 2019). Although these selected samples are better
at teaching compared to randomly selected samples, our
hypothesis was that D may not always contain the perfect
teaching examples, and that a smaller generated dataset D
might be better suited than D,. Sharing our approach of
generating teaching samples is the relatively new field of
dataset distillation, which deals with generating a new set
of samples that will teach the student model best (Wang
et al., 2018; Lorraine et al., 2019; Raghu et al., 2020). These
papers, while similar to us in using machine teaching in a
bi-level optimization fashion, directly optimize the pixels
of the generated images. We, on the other hand, suggest
viewing the teaching process as searching the latent space of
a generative model. The use of a generative model has two
main potential advantages: 1. Generative teaching samples
may contain useful teaching properties such as compression
of information from several real instances or highlighting
of information that is crucial for the classification process.
2. Teaching samples that are generated using a pretrained
generative model are realistic, hopefully making them easier
to learn from for the human learners.

A recent paper, Generative Teaching Networks (GTN) (Such
et al., 2020), attempted a similar approach of machine teach-
ing, or bi-level optimization, combined with generative mod-
els, in order to generate a set of synthetic images that would
teach a student model better than other teaching sets. While
similar to our attempted approach, there are several major
differences between the studies: 1. GTN trains the generator
from scratch during the teaching phase, causing the images
to be unrealistic, while we first train the generator to produce
realistic images and only then begin the teaching optimiza-
tion process. 2. The main application of GTN is neural
architecture search (NAS), while we focus on teaching hu-
mans. 3. Because of its goal, GTN uses ML student models
that have different inductive biases and learning strategies
than human learners, while we use human-proxy models
that were designed to find the best teaching examples for
human learners.

In addition to these works, it is worth pointing out several
recent works that might aid us in the discussion of the next
steps: (Singla et al., 2019) generates an “exaggeration” of
semantic features of different instances, thus highlighting
what makes them more or less fitting into different classes.

Similarly, (Schut et al., 2021) generates counterfactual im-
ages that show the minimal realistic change necessary to
convert an image from one class to another.

3. Problem Formulation

Assume a labeled data distribution X’ x ), from which we
sample a dataset D = {x;,y;}",, st.z; € X,y; € V.
Further assume a student S(X x )) : X — ) that receives
a dataset D and produces a trained predictor X' — ). We
wish to produce a teaching set Dy = {z;,y:}0_1,b <
n, such that S(D7) will reach low prediction error when
tested on D. We assume that the student has never seen
any instances from D before training on instances from
Dr. Note that D is not restricted to be a subset of D,
so that we move away from the usual paradigm of subset
selection in the standard teaching literature to that of subset
generation. In the experiments shown in this paper, Y C N
and X C RP*P (i.e., ) is discrete and X contains images),
but the framework is relevant to other data types as well.
We measure the performance of the predictor S via the
expectation of the loss I(y,9) : YV x Y — R*:

Lop(S(Dr) = - S 1(S(Dr)@)w). ()
i€[n]

4. Algorithm

Next, we will go over our proposed solution to the problem:
the Machine Teaching with Generative Models framework.
In this framework, the teaching set D is generated by a
teacher T : {X x Y} — {X x Y}’ that takes in D, a
dataset of real samples, and generates D, a smaller dataset
that will minimize the error of S(D7) over D. We assume
the teacher 7" has full access to the dataset D. In addition,
we assume 7' has no access to the student S, but that it
has full access to the performance of S, and in the case
where S is a differentiable function, to the gradients of .S
during training. During training, 7" will solve the following
optimization problem:

T(D) := ar min
(D) g, 2

Lp (S(Dr)). 2)
This optimization process is a form of machine teaching
that uses bi-level optimization.

4.1. Machine teaching.

In the beginning of each teacher training iteration, or step
1 in Figure 1, T' produces an annotated set of samples D
and passes it to student S for training. Inside the student
loop at step 2, .S trains a predictor X — ) to minimize
Lp, (S(Dr)) over several student epochs. Finally, in step
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3, the predictor S(Dr) is tested on the real dataset D, pro-
ducing a loss term Lp (S(Dr)). This loss term backprop-
agates back to 7' through the optimization process in step
2, allowing T to change its parameters and produce better
samples in the next teacher loop iteration. We found that
T produces better teaching examples when S is reset at the
beginning of each teacher loop; when S can continue its
training (as done in (Lorraine et al., 2019)), S retains in-
formation from earlier iterations of D, preventing 1" from
creating an isolated set D that will contain all information
necessary to teach S how to predict D.

Teacher loop

Student loop

R ECIE®

Figure 1. Machine Teaching framework. The teacher generates
teaching set Dr using the generator by feeding it latent code
vectors D, (step 1). The student learns how to classify Dt over
many iterations (step 2). Finally, the student is being tested on
the real dataset D, and its performance is backpropagated though
the learning process in step 2 to the teacher, allowing the teacher
to optimize D, and generate better teaching examples in future
iterations of the teacher loop (step 3).

4.2. Teacher: Generative models

To produce a set of teaching examples D that would best
teach S how to solve D, we propose that 7' should have
access to a pretrained generative model G : 2 — X
that was trained on D to produce realistic samples. Over
training, 7" will learn a set of latent space vectors D, =
{2i,9i}0_1, s.t. z; € Z,y; € V. These latent codes will be
fed to G, producing Dp. Note that in our solution, the label
of each sample in D, is known in advance, allowing the
teacher to focus on generating the best teaching examples
for each class. Note also that unlike (Such et al., 2020), we
use a pretrained generative model. This has the benefit of
requiring the teacher to only learn how to sample from an
existing latent space, instead of learning the dual task of
generating both realistic samples and teachable samples.

4.3. Optimizing L (S(Dr))

To perform machine teaching and generate an optimal teach-
ing set, we need to optimize the samples generated by the
teacher based on the performance of the student on the real
dataset. This bi-level optimization process (see Figure 1) is
demanding, as it requires keeping the gradients of the stu-
dents throughout the training phase. We followed a recent
approach (Lorraine et al., 2019) that suggests estimating
the inner loop gradients (step 2 in Figure 1) using implicit

function theorem, thus allowing us to train the student for
long (500+ student epochs) training phases without keeping
the gradients in memory.

4.4. Student: Human-proxies

Because humans require orders of magnitude more time
for each training epoch (i.e., viewing training samples, test-
ing their classification performance on testing samples, re-
ceiving feedback and receiving the next batch of training
samples), we use a human-proxy ML student. The teacher
learns how to generate samples that teach the human-proxy
student how to predict the real dataset, with the ultimate
goal of giving this dataset to a human student who will per-
form better than it would have given a different teaching
dataset.

We divide the identity of the student model in two: The
feature extractor and the classifier head. In both human-
proxy student models in this study we used an extractor
taken from a residual convolutional neural network (He
et al., 2016) pretrained on ImageNet (Deng et al., 2009).
While the metric space learned by a residual network on
ImageNet is not necessarily the same as the metric space
used by humans to identify the distance between images,
we assume that its training on thousands of classes gives it
a good approximation of human metric learning.

Unlike the feature extractor that is frozen and shared be-
tween the models, the student models vary in their classifier
head that receives the features: Either a linear fully con-
nected layer (Linear Classifier, or LC) or a nearest neighbor
classifier (Nearest neighbor, or NN). In all student models,
the weights of the feature extractor were frozen, and only
the classifier head is updated during the student training
loop. The following subsections present the main relevant
details of each student model evaluated in our work, and
how they relate to human learning.

4.4.1. LINEAR CLASSIFIER (LC)

For this student, we used a fully connected layer after the
feature extractor, with the number of outputs as the number
of classes. The loss function used for this classifier is

X exp(0i(z))
lre(z,y) = — ; Ty=clog (W) , 3

where 0;(x) is the logit output of the residual network fea-
ture extractor for class . The LC student was meant to
mimic the decision bound theory of human classification
learning (Trabasso, 1975), in which humans learn by project-
ing the sample onto a feature space and learning a decision
boundary in that space.
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Figure 2. Generative teaching examples perform better than subset selection examples when teaching synthetic models. A-B.
Generative teaching sets learned using the LC and NN human-proxy students. C-D. Teaching sets selected from the real BBBC021 dataset
using the K-centers algorithm and forgettable events algorithm. All teaching sets are divided into the DMSO class (upper row) and
Microtubule stabilizers class (lower row). E. The performance of new LC and NN students trained using teaching sets created similarly to

those in A-D.

4.4.2. NEAREST NEIGHBOR (NN)

For this student, we use the teaching examples D as pro-
totypes in a way similar to a prototypical network (Snell
et al., 2017), classifying each new sample extracted from D
based on its closest prototype in the pretrained metric space.
We use a similarity function based on the pretrained metric
space K : X x X — R™. The decision of the NN student
can be formulated as

exp(K(x,x;))

ol Z“y o (z exp(K(x,xm)’ @

Where z; is the prototype for class <.

For this student, we forgo the bi-level optimization frame-
work, and inject the teaching examples D directly as proto-
types; the only learning is done by the teacher who chooses
the prototypes based on the loss of the student over D. The
NN student was meant to mimic the prototype theory of
human classification learning (Rosch, 1975), in which hu-
mans learn prototypes for each category, and compare new
samples to the nearest prototype for classification.

5. Experiments

To test the machine teaching with generative model frame-
work, we trained the teacher on two datasets from biological
domains (BBBCO021 and Retina, described in Section 6).
For each dataset, we compared two different student models
(LC and NN), as well as two baselines: K-centers (Sener
& Savarese, 2017) and Forgettable events (Toneva et al.,
2018). Each model was used to create a different teaching
set that was later used to teach either a new NN or a LC

student on the real dataset. In the Retina dataset we also
compared the ability of the teaching sets to teach human
students. The images from the teaching set were removed
from the final testing set. The baselines we compare against
are as follows:

¢ K-centers (Sener & Savarese, 2017). This method
selects k prototypes from D that cover D as much as
possible in the metric space.

¢ Forgettable events (Toneva et al.,, 2018). This
method trains an artificial neural network to classify
D, and sorts the samples by how often the network
switched from classifying them one way or another.
The samples that “forget” their label the most are hy-
pothesized to have the most amount of information
about the classes.

5.1. Synthetic experiments

In this experiment, we tested the ability of the teaching
sets to teach the human-proxy ML models described in
Section 4. For each of the two datasets, and for each of
the human-proxy and subset selection models, we trained
a separate teaching set. We then used these teaching sets
to train the LC and NN human-proxy ML students, with
a new randomly initialized model for each of the teaching
sets. Each teaching set and testing human-proxy student
experiment was repeated five times. The LC student model
was trained for 50 epochs, while the NN model was tested
based on the prototypes given by the teaching set. The
models were tested on their accuracy in correctly classifying
the entire dataset D.
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Figure 3. While generated teaching sets outperform selected teaching sets in teaching synthetic models, human participants
learned better using real images compared to generated ones. A-D. As in Figure 2, with the Retinopathy Detection dataset. All
teaching sets are divided into the Control class (upper row) and Diabetic class (lower row). E. The performance of new LC, NN and
Human students trained using teaching sets created similarly to those in A-D.

5.2. Human experiments

In this experiment, we tested the ability of the generated
teaching sets to teach real human learners compared to se-
lected teaching sets. We asked a small sample of 12 people,
4 per condition, to assist in a pilot experiment. The experi-
ment worked as follows: First, the participants saw all ten
images of the teaching set, including labels. After confirm-
ing that they understood the teaching set, the participants
moved on to the next stage, where they received each image
of the teaching set separately without labels, and were asked
to classify them. After classifying all images from the teach-
ing set, the participants moved on to the final testing stage,
where they saw 200 randomly selected unlabeled images
from the real dataset, and were asked to classify them by
clicking on the name of the class they belong to. In addition,
at this stage, the participants could click a button at will to
look at the teaching set, and then return to the testing set to
continue the classification.

6. Results
6.1. Dataset #1 - BBBC021

We tested whether our framework can generate realistic
teaching sets that can train new student learners on cellular
microscopy data. We used the BBBC021 dataset (Caie et al.,
2010), a dataset of human breast cancer cellular images. The
cells were treated with 113 compounds at 8 different doses
and sorted into 12 mechanisms of action (MOA). In this
particular dataset, the training set was composed of 1,400
images equally distributed between the control (i.e., DMSO)
and the Microtubule stabilizer MOA images. For the teacher,
we first fine-tuned a pretrained StyleGAN?2 generative model
(Karras et al., 2020) that was originally trained on the FFHQ

(Karras et al., 2019) dataset for 550,000 epochs. This model
was fine-tuned on the 1,400 BBBC021 images for 90,000
epochs to generate realistic images of BBBC021 cells. Then,
during the teacher training, we optimized ten latent vectors —
five per class — to generate the prototypes in Dr.

We trained two generative student models (LC and NN) and
used the Machine Teaching framework described in Sec-
tion 4 to generate teaching sets for each student model (See
Figure 2A-B). Each teacher was trained for 1,000 teacher
epochs, where inside each teacher epoch the student trained
for 50 student epochs (see Figure 1). The students were
reset to the same initialized state at the beginning of each
teacher epoch.

For the evaluation, we trained new LC and NN models
with new random parameter initializations on the teaching
sets produced in Figure 2A-D. The results can be seen in
Figure 2E. The results show that both the LC and the NN
students performed best when trained with generative teach-
ing sets, followed by the subset selection methods. Each
experiment was repeated five times (i.e., each teaching set
was generated five times with different random seeds, and
each testing student was randomly initialized to train on the
datasets).

6.2. Dataset #2 — Retina

Similar to the BBBCO021 dataset, we tested how well our
framework performs with a more complex dataset, the Di-
abetic Retinopathy Detection dataset (Graham, 2015) that
consists of images of retinas with different stages of diabetic
retinopathy, annotated by experts. We subsampled the retina
dataset to get 1,600 images divided equally from the control
(no diabetic retinophaty) and the most severe (prolifera-
tive diabetic retinopathy) cases, and fine-tuned a pretrained
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StyleGan2 generative model that was trained for 550,000
epochs on the FFHQ dataset. This model was fine-tuned on
the subsampled retina dataset for 10,000 epochs to produce
realistic images. The teacher and student framework was
the same as in Section 6.1, and the generated teaching sets,
as well as the teaching sets selected by the subset selection
baselines, can be seen in Figure 3. Based on the better per-
formance of the LC student in the BBBCO021 dataset, we
tested the human students on the teaching set produced by
the LC student.

As can be seen in Figure 3, the human participants suc-
ceeded in classifying the images from the testing set better
than chance for both the subset selection methods and the
generated teaching sets. However, while the LC and NN
student performed best when trained on generated teaching
sets, the human students performed best on the real samples
chosen by subset selection methods, in a reverse order to
the performance of the human-proxy student models.

7. Discussion

In this work, we tested the possibility of using machine
teaching in combination with generative models to generate
a small set of images that will contain all the information
necessary to teach humans how to predict the class of sam-
ples in a real dataset. We found that while this method
indeed succeeds in producing realistic images that teach a
human-proxy model well, and while these realistic synthetic
teaching sets succeed in teaching real humans better than
chance, we don’t yet succeed in producing a teaching set
that will teach human students better than simpler methods
for choosing prototypes from the real dataset using subset
selection.

These preliminary results raise interesting questions that can
be addressed in future work: How come realistic synthetic
teaching sets, that succeed in teaching humans better than
chance, still teach less well than subset selection methods?
First, it may be that the human proxy students do not mimic
the human category learning well enough, preventing them
from creating a good teaching set that will be optimal for
both machines and humans (see for example the reverse
order of performance between the LC student and the human
students in Figure 3H). This would mean that better human
proxy students are needed. Second, it may be that although
generative models may generate good teaching samples, the
real dataset contains better teaching samples that are harder
to find in the large latent space (at least using our approach).
Third, the bi-level optimization method may require better
teacher models than a simple search in the latent space of
the generative model, e.g., regularization of the distance
between the latent codes to prevent teaching samples that
are too similar to each other.

In addition to these directions, the results show mediocre re-
sults for the human learners, reaching only 69.1% accuracy
after learning with the best performing method, while the
best ML method reached 79.3% using the same number of
realistic samples. While humans are notoriously better than
machines in few-shot learning, it may be that these complex
biological datasets require auxiliary aids in addition to static
teaching sets to enhance learning. For example, new meth-
ods such as (Singla et al., 2019) and (Schut et al., 2021),
which focus on producing realistic counterfactuals to differ-
ent samples, may help in providing causal explanations for
why does a sample belong to one class or another, possibly
assisting the teaching process. Another possible auxiliary
aid is providing interpretable visual explanations as for why
a sample belongs to a specific class (Aodha et al., 2018).
It would be interesting to examine how the performance
of human learners changes with additional training images
compared to ML method learning curves. This endeavor
of finding human-proxy learners is exciting on its own —
creating a ML method that could mimic the human learning
process, even if not human performance, will allow us to
tailor teaching sets to best teach humans properties of the
data. This may be done by directly optimizing human-proxy
models using human participant and ML method learning
data over the same datasets.

We believe the question of how can we best use ML to assist
humans in learning about their data is timely: we have both
the need, due to large annotated datasets in experimental
sciences, and the tools, thanks to the recent bloom of inter-
pretable machine learning methods. Our work here shows
that these methods can indeed help in teaching humans, al-
though more work needs to be done to teach humans better
than more classical methods.
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